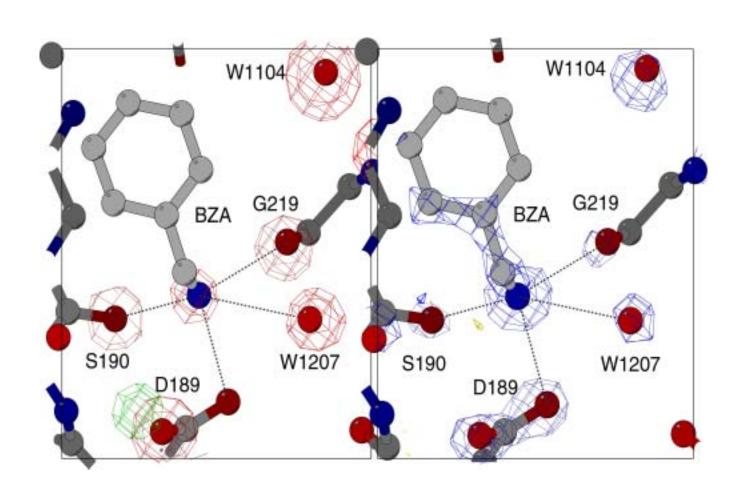

Goals

- De novo phasing of crystal structures
- But more broadly:
 - Model radiation damage to improve data quality
 - AND get phases

Radiation damage in macromolecular crystals

- Specific effects
 - Lowered occupancy of heavy atoms (Se, Br, Hg...)
 - Breakage of S-S bonds
 - Decarboxylation
 - Debromination of nucleic acids
 - Dehydroxylation
 - ==>Signal
- Global effects
 - Increase in unit cell dimensions
 - Small rotations
 - ==>Noise


Specific Effects

Red & Green: Sharp sites

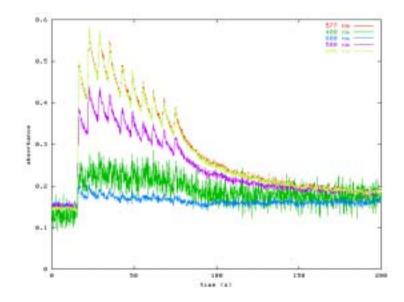
Blue & Yellow: Difference maps

More Specific effects

Phasing by Radiation Damage

- These specific sites can be loosely considered similar to SIR
- "Heavy atom" dataset = dataset before radiation damage
- "Native" = dataset after radiation damage
 - ===> Radiation damage Induced Phasing (RIP)

Data Collection Strategies


- Collect "before" dataset, "burn", collect "after" dataset.
 - Can optimize burn -- not too much, not too little
 - Can use existing software in SIR mode (and SHELXC in RIP mode)
- Collect multiple datasets until crystal burns out
 - No need for burn optimization
 - In principle can yield accurate zero and final dose extrapolated data
 - Longer data collection necessary
 - Need a method of selecting which datasets

A-burn-B

- Done with no attenuation
- Burn optimization
 - Burn length by
 - Trial and error
 - Spectrophotometric monitoring of radical formation

Ravelli, Murray, Weik, Theveneau, Garman

RIP datasets

Protein	Resolution (Å)	SG	% solvent	Site	Sites:#residues
Insulin	1.4	I2 ₁ 3	64	SS	3:51
Trypsin	1.4	P2 ₁ 2 ₁ 2 ₁	41	SS	3:229
RNAse	1.65	P3 ₂ 21	50	SS	3:102
HEWL	1.6	P4 ₃ 2 ₁ 2	35	SS	4:129
RNA	1.4	P2 ₁ 2 ₁ 2 ₁	34	Br	8:48
PYP	1.4	P6 ₅	35	S-C	1:122
DNA	1.4	P3 ₁ 21	50	Br	8:83
Thaumatin	1.6	P4 ₁ 2 ₁ 2	56	SS	8:207
A	1.7	P2 ₁ 2 ₁ 2 ₁	59	SS	1:500
Fibronectin	1.6	P4 ₁ 2 ₁ 2	30	SS	4:90
C	1.2	C2	28	CO	0:82

Successes in RIP

- Generally high resolution data
- Generally with SS
- One by just S
- None by just carboxylates

Solving structures by RIP

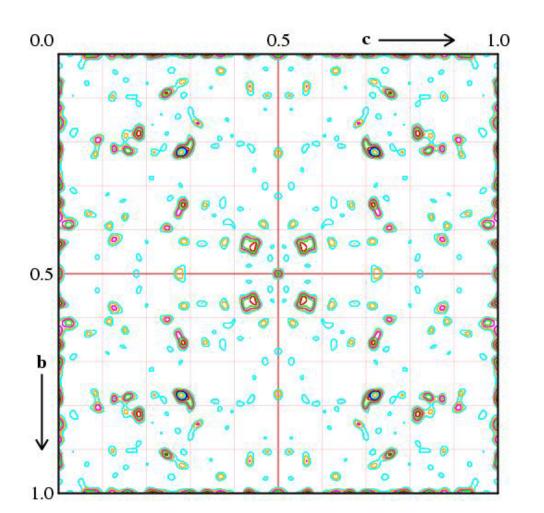
SHARP

- Explicitly treated
- Accurate phases, but speed is an issue

• SHELX

- Preparation of DeltaFs (F_{before}-F_{after)}
 - SHELXC
 - XPREP
- SHELXD (best CC's for good data ~30%)
- SHELXE

RIP Harker Sections


Patterson section X = 0.0000 for $xp_1_0.98850.hkl$

Space group: I2(1)3

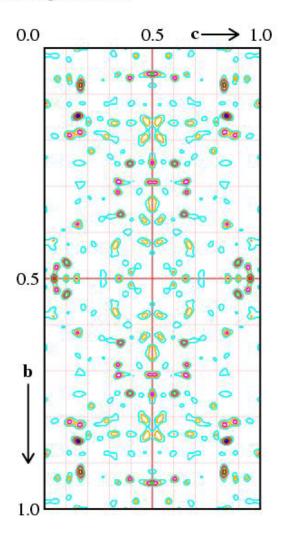
Cell: 78.320 78.320 78.320 90.000 90.000 90.000

+Y down, +Z across, 512 x 512 grid, contour interval = 1.0 sigma

Super-sharpened, origin removed

Insulin

RIP Harker Sections


Patterson section X = 0.5000 for $xp_1_0.98188.hkl$

Space group: P4(3)2(1)2

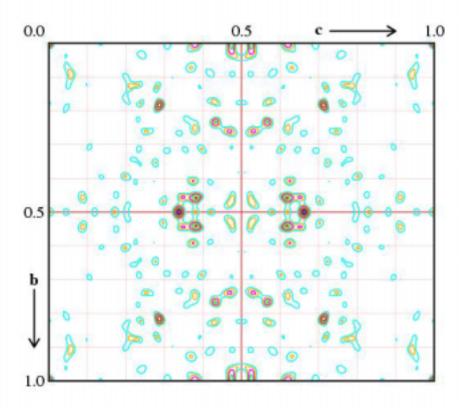
Cell: 78.770 78.770 36.820 90.000 90.000 90.000

+Y down, +Z across, 512 x 256 grid, contour interval = 1.0 sigma

Super-sharpened, origin removed

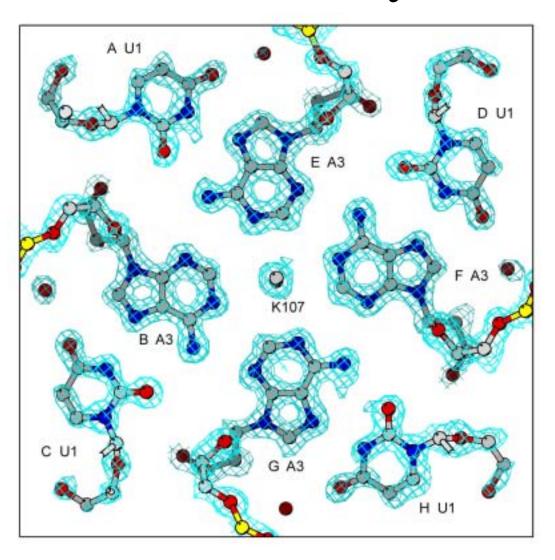
Lysozyme

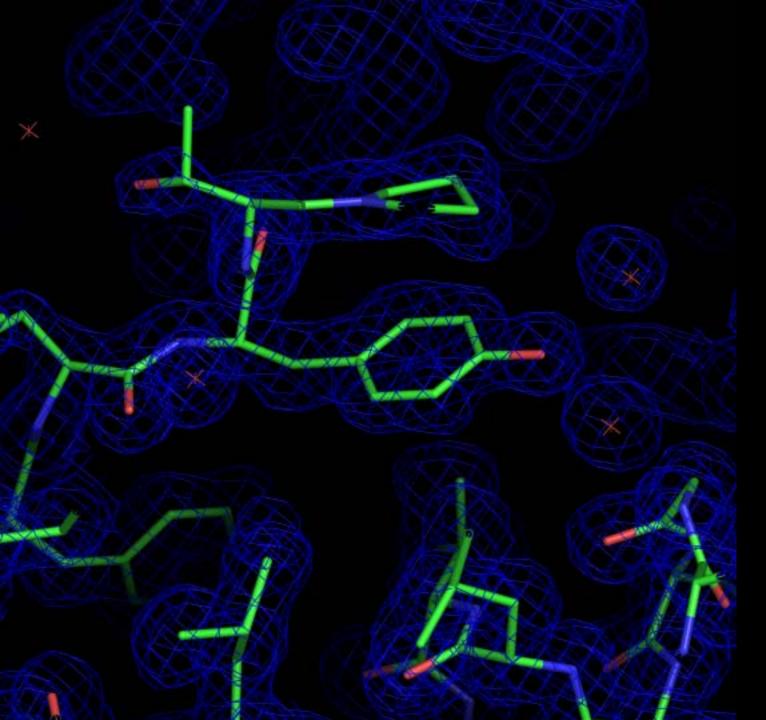
RIP Harker Sections

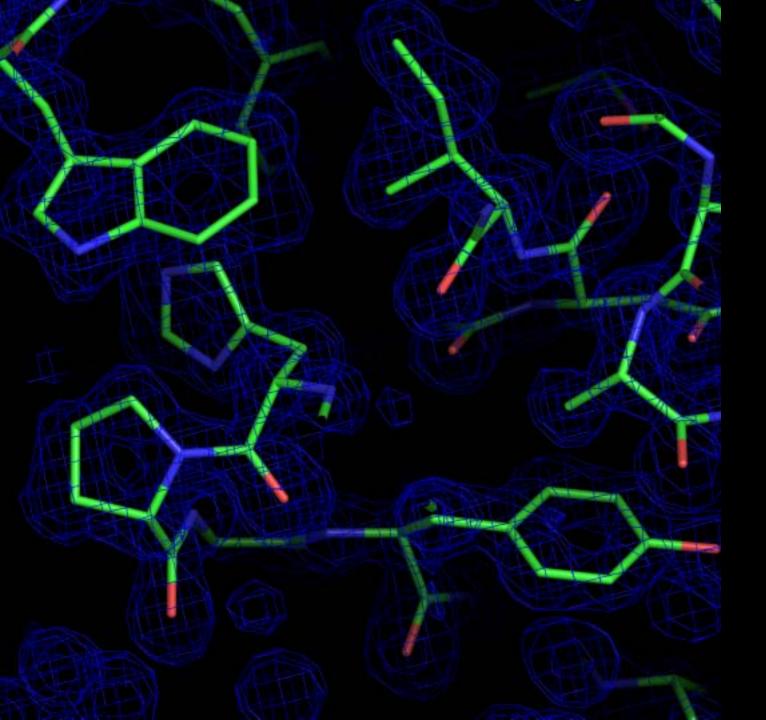

Patterson section X = 0.5000 for $xp_1_0.99525.hk1$

Space group: P2(1)2(1)2(1)

Cell: 54.253 58.332 66.479 90.000 90.000 90.000


+Y down, +Z across, 256 x 256 grid, contour interval = 1.0 sigma


Super-sharpened, origin removed


Trypsin

DNA/RNA Hybrid

Insulin
SHELXE
Map
1.0 σ

Trypsin
SHELXE
Map
1.0 σ

RIP issues

- Finding sites can be improved
- Can scaling for RIP be improved?
- Can extracting phases can be improved?

Finding Sites

- F_{before} F_{after} Pattersons are different than
 SIR pattersons
 - "Positive" peaks arise like SIR, MIR etc (existing positions disappear)
 - "Negative" peaks from SH groups swinging away (new positions appear)

Improving Scaling

- Possible to improve scaling?
 - Many short negative vectors in F_{before} F_{after} Pattersons
 - Many negative peaks (= electrons gained during the experiment) in unexpected and unlikely positions.
- Apply artificial scale to F_{after}
 - Observe effects on peak height, noise

Future Prospects

- A-Burn-B method
 - Improve site identification
 - Improve phase accuracy
 - Improve burning method
 - Maximize specific changes
 - Minimize general changes
- Multiple dataset method/Zero dose extrapolation
 - Bricogne -SHARP
 - Weiss and Warkentin Acta Cryst. (2004). D 60, 686-695
 - Bodek and Otwinoswski --SCALEPACK
 - Kabsch -XSCALE
 - Diederichs and Ravelli Acta Cryst. (2003). D 59, 903-90
- Generally
 - Our understanding of the effects of radiation damage is incomplete
 - Can we use low resolution differences?

RIP advantages

- No modification of the protein necessary
- Can be performed on a fixed wavelength beamline
- Fast data collection

```
Cubic Insulin

Collect 45 frames attenuated 5 min

Burn crystal 30 s unattenuated 1 min

Collect 45 frames attenuated 5 min

Run xprep and shelxd to find 3 sites 1 min

Cycle shelxe -b to find 40 sites 3 min

Total (excluding arp/warp) 15 min
```

- 2-for-1: Understanding radiation damage
 - Improves data quality
 - Can give useful phase information

Acknowledgements

- Raimond Ravelli
- George Sheldrick
- Elspeth Garman